منابع مشابه
Jordan ∗−homomorphisms between unital C∗−algebras
Let A,B be two unital C∗−algebras. We prove that every almost unital almost linear mapping h : A −→ B which satisfies h(3uy + 3yu) = h(3u)h(y) + h(y)h(3u) for all u ∈ U(A), all y ∈ A, and all n = 0, 1, 2, ..., is a Jordan homomorphism. Also, for a unital C∗−algebra A of real rank zero, every almost unital almost linear continuous mapping h : A −→ B is a Jordan homomorphism when h(3uy + 3yu) = h...
متن کاملCharacterization of Pseudo n-Jordan homomorphism Between unital algebras
Let A and B be Banach algebras and B be a right A-module. In this paper, under special hypotheses we prove that every pseudo (n+1)-Jordan homomorphism f:A----> B is a pseudo n-Jordan homomorphism and every pseudo n-Jordan homomorphism is an n-Jordan homomorphism
متن کاملSpecial Identities for Quasi-jordan Algebras
Semispecial quasi-Jordan algebras (also called Jordan dialgebras) are defined by the polynomial identities a(bc) = a(cb), (ba)a = (ba)a, (b, a, c) = 2(b, a, c)a. These identities are satisfied by the product ab = a a b + b ` a in an associative dialgebra. We use computer algebra to show that every identity for this product in degree ≤ 7 is a consequence of the three identities in degree ≤ 4, bu...
متن کاملIsomorphisms in unital $C^*$-algebras
It is shown that every almost linear bijection $h : Arightarrow B$ of a unital $C^*$-algebra $A$ onto a unital$C^*$-algebra $B$ is a $C^*$-algebra isomorphism when $h(3^n u y) = h(3^n u) h(y)$ for allunitaries $u in A$, all $y in A$, and all $nin mathbb Z$, andthat almost linear continuous bijection $h : A rightarrow B$ of aunital $C^*$-algebra $A$ of real rank zero onto a unital$C^*$-algebra...
متن کاملVarieties of Unital `-Groups and ΨMV-Algebras
(Day 1): References (for general background) →Varieties of lattice-ordered groups, N. R. Reilly, in Lattice-Ordered Groups, Advances and Techniques, A. M. W. Glass and W. C. Holland (eds.), Kluwer Academic Publishers, 1989. Lattice-Ordered Groups, an Introduction, M. Anderson and T. Feil, D. Reidel Pub. Co., 1988. Theory of Lattice-Ordered Groups, M. Darnel, Marcel Dekker, 1995. Partially Order...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 2011
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.2011.251.23